
Chapter 2
Homogenous transformation matrices

2.1 Translational transformation

In the introductory chapter we have seen that robots have either translational or
rotational joints. We therefore need a unified mathematical description of transla-
tional and rotational displacements. The translational displacement d, given by the
vector

d = ai+ bj+ ck, (2.1)

can be described also by the following homogenous transformation matrix H

H = Trans(a,b,c) =

⎡
⎢⎢⎣

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ . (2.2)

When using homogenous transformation matrices an arbitrary vector has the fol-
lowing 4×1 form

q =

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦=

[
x y z 1

]T
. (2.3)

A translational displacement of vector q for a distance d is obtained by multiply-
ing the vector q with the matrix H

v =

⎡
⎢⎢⎣

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

x + a
y + b
z+ c

1

⎤
⎥⎥⎦ . (2.4)

The translation, which is presented by multiplication with a homogenous matrix, is
equivalent to the sum of vectors q and d

v = q+ d = (xi+ yj+ zk)+ (ai+ bj+ ck) = (x + a)i+(y + b)j+(z+ c)k. (2.5)
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In a simple example, the vector 2i + 3j + 2k is translationally displaced for the
distance 4i−3j+ 7k

v =

⎡
⎢⎢⎣

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2
3
2
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

6
0
9
1

⎤
⎥⎥⎦ .

The same result is obtained by adding the two vectors.

2.2 Rotational transformation

Rotational displacements will be described in a right-handed rectangular coordinate
frame, where the rotations around the three axes, as shown in Figure 2.1, are con-
sidered as positive. Positive rotations around the selected axis are counter-clockwise
when looking from the positive end of the axis towards the origin of the frame O.
The positive rotation can be described also by the so called right hand rule, where the
thumb is directed along the axis towards its positive end, while the fingers show the
positive direction of the rotational displacement. The direction of running of athletes
on a stadium is also an example of a positive rotation.

Let us first take a closer look at the rotation around the x axis. The coordinate
frame x′, y′, z′ shown in Figure 2.2 was obtained by rotating the reference frame
x, y, z in the positive direction around the x axis for the angle α . The axes x and x′
are collinear.

The rotational displacement is also described by a homogenous transformation
matrix. The first three rows of the transformation matrix correspond to the x, y and z
axes of the reference frame, while the first three columns refer to the x′, y′ and z′

O

x

y

z

Rot (z, γ  )

Rot(x, α )
Rot(y , β )

Fig. 2.1 Right-hand rectangular frame with positive rotations
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Fig. 2.2 Rotation around x axis

axes of the rotated frame. The upper left nine elements of the matrix H represent the
3×3 rotation matrix. The elements of the rotation matrix are cosines of the angles
between the axes given by the corresponding column and row

Rot(x,α) =

x′ y′ z′⎡
⎢⎢⎣

cos0◦ cos90◦ cos90◦ 0
cos90◦ cosα cos(90◦ + α) 0
cos90◦ cos(90◦−α) cosα 0

0 0 0 1

⎤
⎥⎥⎦

x
y
z

=

⎡
⎢⎢⎣

1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

⎤
⎥⎥⎦

.

(2.6)

The angle between the x′ and the x axes is 0◦, therefore we have cos0◦ in the
intersection of the x′ column and the x row. The angle between the x′ and the y
axes is 90◦, we put cos90◦ in the corresponding intersection. The angle between the
y′ and the y axes is α , the corresponding matrix element is cosα .

To become more familiar with rotation matrices, we shall derive the matrix de-
scribing a rotation around the y axis by using Figure 2.3. Now the collinear axes are
y and y′

y = y′. (2.7)

By considering the similarity of triangles in Figure 2.3, it is not difficult to derive
the following two equations

x = x′ cosβ + z′ sinβ
z = −x′ sin β + z′ cosβ . (2.8)
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Fig. 2.3 Rotation around y axis

All three equations (2.7) and (2.8) can be rewritten in the matrix form

Rot(y,β ) =

x′ y′ z′⎡
⎢⎢⎣

cosβ 0 sin β 0
0 1 0 0

−sinβ 0 cosβ 0
0 0 0 1

⎤
⎥⎥⎦

x
y
z

. (2.9)

The rotation around the z axis is described by the following homogenous trans-
formation matrix

Rot(z,γ) =

⎡
⎢⎢⎣

cosγ −sinγ 0 0
sinγ cosγ 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (2.10)

In a simple numerical example we wish to determine the vector w which is ob-
tained by rotating the vector u = 7i+ 3j + 0k for 90◦ in the counter clockwise i.e.
positive direction around the z axis. As cos90◦ = 0 and sin90◦ = 1, it is not difficult
to determine the matrix describing Rot(z,90◦) and multiplying it by the vector u
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Fig. 2.4 Example of rotational transformation

w =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7
3
0
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
−3
7
0
1

⎤
⎥⎥⎦ .

The graphical presentation of rotating the vector u around the z axis is shown in
Figure 2.4.

2.3 Pose and displacement

In the previous section we have learned how a point is translated or rotated around
the axes of the cartesian frame. In continuation we shall be interested in displace-
ments of objects. We can always attach a coordinate frame to a rigid object under
consideration. In this section we shall deal with the pose and the displacement of
rectangular frames. We shall see that a homogenous transformation matrix describes
either the pose of a frame with respect to a reference frame, or it represents the dis-
placement of a frame into a new pose. In the first case the upper left 3× 3 matrix
represents the orientation of the object, while the right-hand 3×1 column describes
its position (e.g. the position of its center of mass). The last row of the homogenous
transformation matrix will be always represented by 0, 0, 0, 1. In the case of object
displacement, the upper left matrix corresponds to rotation and the right-hand col-
umn corresponds to translation of the object. We shall examine both cases through
simple examples. Let us first clear up the meaning of the homogenous transforma-
tion matrix describing the pose of an arbitrary frame with respect to the reference
frame. Let us consider the following product of homogenous matrices which gives
a new homogenous transformation matrix H
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H = Trans(4,−3,7)Rot(y,90◦)Rot(z,90◦)

=

⎡
⎢⎢⎣

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 1 4
1 0 0 −3
0 1 0 7
0 0 0 1

⎤
⎥⎥⎦ .

(2.11)

When defining the homogenous matrix representing rotation, we learned that the
first three columns describe the rotation of the frame x′, y′, z′ with respect to the
reference frame x, y, z

x′ y′ z′⎡
⎢⎢⎣
�0� �0� �1� 4
1 0 0 −3
�0� �1� �0� 7
0 0 0 1

⎤
⎥⎥⎦

x
y
z

.
(2.12)

The fourth column represents the position of the origin of the frame x′, y′, z′
with respect to the reference frame x, y, z. With this knowledge we can represent
graphically the frame x′, y′, z′ described by the homogenous transformation matrix
(2.11), relative to the reference frame x, y, z (Figure 2.5). The x′ axis points in the
direction of y axis of the reference frame, the y′ axis is in the direction of the z axis,
and the z′ axis is in the x direction.

To convince ourselves of the correctness of the frame drawn in Figure 2.6, we
shall check the displacements included in equation (2.11). The reference frame is

z

y

x′

y′

z′

x

4

–3

7

Fig. 2.5 The pose of an arbitrary frame [x′ y′ z′] with respect to the reference frame [x y z]
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Fig. 2.6 Displacement of the reference frame into a new pose (from right to left). The origins O1,
O2 and O′ are in the same point
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Fig. 2.7 Displacement of the object into a new pose

first translated into the point [4,−3,7]T , afterwards it is rotated for 90◦ around the
new y axis and finally it is rotated for 90◦ around the newest z axis (Figure 2.6). The
three displacements of the reference frame result in the same final pose as shown in
Figure 2.5.

In continuation of this chapter we wish to elucidate the second meaning of
the homogenous transformation matrix, i.e. a displacement of an object or coor-
dinate frame into a new pose (Figure 2.7). First, we wish to rotate the coordinate
frame x, y, z for 90◦ in the counter-clockwise direction around the z axis. This can
be achieved by the following postmultiplication of the matrix H describing the ini-
tial pose of the coordinate frame x, y, z

H1 = H ·Rot(z,90◦). (2.13)
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The displacement resulted in a new pose of the object and new frame x′, y′, z′ shown
in Figure 2.7. We shall displace this new frame for −1 along the x′ axis, 3 units
along y′ axis and −3 along z′ axis

H2 = H1 ·Trans(−1,3,−3). (2.14)

After translation a new pose of the object is obtained together with a new frame x′′,
y′′, z′′. This frame will be finally rotated for 90◦ around the y′′ axis in the positive
direction

H3 = H2 ·Rot(y′′,90◦). (2.15)

The equations (2.13), (2.14) and (2.15) can be successively inserted one into another

H3 = H ·Rot(z,90◦) ·Trans(−1,3,−3) ·Rot(y′′,90◦) = H ·D. (2.16)

In equation (2.16) the matrix H represents the initial pose of the frame, H3 is the
final pose, while D represents the displacement

D = Rot(z,90◦) ·Trans(−1,3,−3) ·Rot(y′′,90◦)

=

⎡
⎢⎢⎢⎣

0 −1 0 0
1 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 −1
0 1 0 3

0 0 1 −3

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 −1 0 −3
0 0 1 −1

−1 0 0 −3

0 0 0 1

⎤
⎥⎥⎥⎦ .

(2.17)

Finally we shall perform the postmultiplication describing the new relative pose of
the object

H3 = H ·D =

⎡
⎢⎢⎢⎣

1 0 0 2
0 0 −1 −1

0 1 0 2

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 −1 0 −3
0 0 1 −1

−1 0 0 −3

0 0 0 1

⎤
⎥⎥⎥⎦

=

x′′′ y′′′ z′′′⎡
⎢⎢⎣

0 −1 0 −1
1 0 0 2
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

x0

y0

z0

.

(2.18)

As in the previous example we shall graphically verify the correctness of the
matrix (2.18). The three displacements of the frame x, y, z: rotation for 90◦ in
counter-clockwise direction around the z axis, translation for −1 along the x′ axis,



2.4 Geometrical robot model 17

3 units along y′ axis and −3 along z′ axis, and rotation for 90◦ around y′′ axis in the
positive direction are shown in Figure 2.7. The result is the final pose of the object
x′′′, y′′′, z′′′. The x′′′ axis points in the positive direction of the y0 axis, y′′′ points in
the negative direction of x0 axis and z′′′ points in the positive direction of z0 axis of
the reference frame. The directions of the axes of the final frame correspond to the
first three columns of the matrix H3. There is also agreement between the position
of the origin of the final frame in Figure 2.7 and the fourth column of the matrix H3.

2.4 Geometrical robot model

Our final goal is the geometrical model of a robot manipulator. A geometrical robot
model is given by the description of the pose of the last segment of the robot (end-
effector) expressed in the reference (base) frame. The knowledge how to describe
the pose of an object by the use of homogenous transformation matrices will be
first applied to the process of assembly. For this purpose a mechanical assembly
consisting of four blocks, such as presented in Figure 2.8, will be considered. A plate
with dimensions (5× 15× 1) is placed over a block (5× 4× 10). Another plate
(8×4×1) is positioned perpendicularly to the first one, holding another small block
(1×1×5).

A frame is attached to each of the four blocks as shown in Figure 2.8. Our task
will be to calculate the pose of the O3 frame with respect to the reference frame O0.
In the last chapter we learned that the pose of a displaced frame can be expressed
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11

Fig. 2.8 Mechanical assembly
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with respect to the reference frame by the use of the homogenous transformation
matrix H. The pose of the frame O1 with respect to the frame O0 will be denoted
by 0H1. In the same way 1H2 represents the pose of O2 frame with respect to O1

and 2H3 the pose of O3 with regard to O2 frame. We learned also that the successive
displacements are expressed by postmultiplications (successive multiplications from
left to right) of homogenous transformation matrices. Also the assembly process can
be described by postmultiplication of the corresponding matrices. The pose of the
fourth block can be written with respect to the first one by the following matrix

0H3 = 0H1
1H2

2H3. (2.19)

The blocks were positioned perpendicularly one to another. In this way it is not nec-
essary to calculate the sines and cosines of the rotation angles. The matrices can be
determined directly from Figure 2.8. The x axis of O1 frame points in negative direc-
tion of the y axis in the O0 frame. The y axis of O1 frame points in negative direction
of the z axis in the O0 frame. The z axis of the O1 frame has the same direction as x
axis of the O0 frame. The described geometrical properties of the assembly structure
are written into the first three columns of the homogenous matrix. The position of
the origin of the O1 frame with respect to the O0 frame is written into the fourth
column

O1
︷ ︸︸ ︷
x y z

0H1 =

⎡
⎢⎢⎣

0 0 1 0
−1 0 0 6
0 −1 0 11
0 0 0 1

⎤
⎥⎥⎦

x
y
z

⎫
⎬
⎭O0.

(2.20)

In the same way the other two matrices are determined

1H2 =

⎡
⎢⎢⎣

1 0 0 11
0 0 1 −1
0 −1 0 8
0 0 0 1

⎤
⎥⎥⎦ (2.21)

2H3 =

⎡
⎢⎢⎣

1 0 0 3
0 −1 0 1
0 0 −1 6
0 0 0 1

⎤
⎥⎥⎦ . (2.22)
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The position and orientation of the fourth block with respect to the first one is given
by the 0H3 matrix which is obtained by successive multiplication of the matrices
(2.20), (2.21) and (2.22)

0H3 =

⎡
⎢⎢⎣

0 1 0 7
−1 0 0 −8
0 0 1 6
0 0 0 1

⎤
⎥⎥⎦ . (2.23)

The fourth column of the matrix 0H3[7,−8,6,1]T represents the position of the
origin of the O3 frame with respect to the reference frame O0. The correctness of the
fourth column can be checked from Figure 2.8. The rotational part of the matrix 0H3

represents the orientation of the O3 frame with respect to the reference frame O0.
Now let us imagine that the first horizontal plate rotates with respect to the first

vertical block around axis 1 for angle ϑ1. The second plate also rotates around the
vertical axis 2 for angle ϑ2. The last block is elongated for distance d3 along the
third axis. In this way we obtained a robot manipulator, which was named SCARA
in the introductory chapter.

Our goal is to develop a geometrical model of the SCARA robot. Blocks and
plates from Figure 2.9 will be replaced by symbols for rotational and translational
joints that we know from the introduction (Figure 2.10).

The first vertical segment with the length l1 starts from the basis, where the robot
is attached to the ground, and is terminated by the first rotational joint. The second
segment with length l2 is horizontal and rotates around the first segment. The rota-
tion in the first joint is denoted by the angle ϑ1. The third segment with the length
l3 is also horizontal and rotates around the vertical axis at the end of the second

Axis 1
Axis 2

Axis 3

ϑ1 ϑ2

d3

Fig. 2.9 Displacements of the mechanical assembly
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l1

l3

l2

d3

J1

J2

Fig. 2.10 SCARA robot manipulator in an arbitrary pose

segment. The angle is denoted as ϑ2. There is a translational joint at the end of
the third segment. It enables the robot end-effector to approach the working plane
where the robot task takes place. The translational joint is displaced from zero initial
length to the length described by the variable d3.

The robot mechanism is first brought to the initial pose which is also called
“home position”. In the initial pose two neighboring segments must be either par-
allel or perpendicular. The translational joints are in their initial position di = 0.
The initial pose of the SCARA manipulator is shown in Figure 2.11.

First, the coordinate frames must be drawn into the SCARA robot presented in
Figure 2.11. The first (reference) coordinate frame x0, y0, z0 is placed onto the base
of the robot. In the last chapter we shall learn that robot standards require the z0

axis to point perpendicularly out from the base. In this case it is aligned with the
first segment. The other two axes are selected in such a way that robot segments are
parallel to one of the axes of the reference coordinate frame, when the robot is in its
initial home position. In our case we align the y0 axis with the segments l2 and l3.
The coordinate frame must be right handed. The rest of the frames are placed into
the robot joints. The origins of the frames are drawn in the center of each joint. One
of the frame axes must be aligned with the joint axis. The simplest way to calculate
the geometrical model of a robot is to make all the frames in the robot joints parallel
to the reference frame (Figure 2.11).

The geometrical model of a robot describes the pose of the frame attached to
the end-effector with respect to the reference frame on the robot base. Similar to
the case of the mechanical assembly, we shall obtain the geometrical model by suc-
cessive multiplication (postmultiplication) of homogenous transformation matrices.
The main difference between the mechanical assembly and the robot manipulator
are the displacements of robot joints. For this purpose, each matrix i−1Hi describing
the pose of a segment will be followed by a matrix Di representing the displacement
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Fig. 2.11 The SCARA robot manipulator in the initial pose

of either the translational or the rotational joint. Our SCARA robot has three joints.
The pose of the end frame x3, y3, z3 with respect to the base frame x0, y0, z0 is
expressed by the following postmultiplication of three pairs of homogenous trans-
formation matrices

0H3 = (0H1D1) · (1H2D2) · (2H3D3). (2.24)

In equation (2.24) the matrices 0H1, 1H2, and 2H3 describe the pose of each joint
frame with respect to the preceding frame in the same way as in the case of assembly
of the blocs. From Figure 2.11 it is evident that the D1 matrix represents a rotation
around the positive z1 axis. The following product of two matrices describes the
pose and the displacement in the first joint

0H1D1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 l1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

c1 −s1 0 0
s1 c1 0 0
0 0 1 l1
0 0 0 1

⎤
⎥⎥⎦ .
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In the above matrices the following shorter notation was used: sinϑ1 = s1 and
cosϑ1 = c1.

In the second joint there is a rotation around the z2 axis

1H2D2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c2 −s2 0 0
s2 c2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

c2 −s2 0 0
s2 c2 0 l2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

In the last joint there is translation along the z3 axis

2H3D3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 l3
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −d3

0 0 0 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 l3
0 0 1 −d3

0 0 0 1

⎤
⎥⎥⎦ .

The geometrical model of the SCARA robot manipulator is obtained by postmulti-
plication of the three matrices derived above

0H3 =

⎡
⎢⎢⎣

c12 −s12 0 −l3s12− l2s1
s12 c12 0 l3c12 + l2c1
0 0 1 l1 −d3

0 0 0 1

⎤
⎥⎥⎦ .

When multiplying the three matrices the following abbreviation was introduced
c12 = cos(ϑ1 + ϑ2) = c1c2− s1s2 and s12 = sin(ϑ1 + ϑ2) = s1c2 + c1s2.
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